Explicit solutions of generalized Cauchy-Riemann systems using the transplant operator

نویسندگان

  • Vladislav V. Kravchenko
  • Sébastien Tremblay
چکیده

In [8] it was shown that the tool introduced there and called the transplant operator transforms solutions of one Vekua equation into solutions of another Vekua equation, related to the first via a Schrödinger equation. In this paper we prove a fundamental property of this operator: it preserves the order of zeros and poles of generalized analytic functions and transforms formal powers of the first Vekua equation into formal powers of the same order for the second Vekua equation. This property allows us to obtain positive formal powers and a generating sequence of a “complicated” Vekua equation from positive formal powers and a generating sequence of a “simpler” Vekua equation. Similar results are obtained regarding the construction of Cauchy kernels. Elliptic and hyperbolic pseudoanalytic function theories are considered and examples are given to illustrate the procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Dirac Operator and Quaternionic Analysis

Properties of the Cauchy–Riemann–Fueter equation for maps between quaternionic manifolds are studied. Spaces of solutions in case of maps from a K3–surface to the cotangent bundle of a complex projective space are computed. A relationship between harmonic spinors of a generalized nonlinear Dirac operator and solutions of the Cauchy– Riemann–Fueter equation are established.

متن کامل

Existence of Entropy Solutions for Nonsymmetric Fractional Systems

The present work focuses on entropy solutions for the fractional Cauchy problem of nonsymmetric systems. We impose sufficient conditions on the parameters to obtain bounded solutions of L∞. The solutions attained are unique and exclusive. Performance is established by utilizing the maximum principle for certain generalized time and space-fractional diffusion equations. The fractional differenti...

متن کامل

Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition

Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...

متن کامل

$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework

In the present work the space  $L_{p;r} $ which is continuously embedded into $L_{p} $  is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...

متن کامل

2 v 1 3 J an 1 99 5 Connection between Different Function Theories in Clifford Analysis ∗

We describe an explicit connection between solutions to equations Df = 0 (the Generalized Cauchy-Riemann equation) and (D+M)f = 0, where operators D and M commute. The described connection allows to construct a “function theory” (the Cauchy theorem, the Cauchy integral, the Taylor and Laurent series etc.) for solutions of the second equation from the known function theory for solution of the fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009